
C++ Primer

Structs and Functions
struct foo {

// data members

};

void bar(); // function declaration

void bar() {…} // function definition

Classes with Methods
class foo {

public:

void bar(); // method declaration

};

void foo::bar() {} // method definition

Scope

public Accessible from anywhere

private Accessible only from within the class

protected Accessible only from within the class and any derived class

Scope
class foo {

public:

int accessible_to_everyone;

private:

int accessible_to_just_foo;

};

Pass-by-Reference
In C, you passed all parameters by value. The values
specified in the arguments of a function call were copied.
You had to use pointers in order to change a variable’s
value.

In C++, you can additionally pass parameters by
reference.

Pass-by-Reference
Suppose I want to change the value of some int variable:

void foo(int *c) { // pass by value

*c = 1;

}

void bar(int &c) { // pass by reference

c = 1;

}

Pass-by-Reference
You can access the variables directly through pass by
reference.

It is very important to note that you can only pass
variables! For example, you can’t use the bar function
on the previous page and call bar(1).

const Methods
The const keyword can restrict which instances of a class
can call a specific method. This prevents certain methods
from changing the data of a constant object.

const Methods
Suppose in class foo we have the functions:

void foo::bar();

void foo::baz() const;

foo f1 can call bar() and baz().
const foo f2 can only call baz().

this
In C++, this is a pointer to an instance of the class, hence
“this.”

this
Suppose we have the following class:

class Pair {

public:

Pair(int x, int y);

int x, y;

};

this
The function takes arguments of the same name as the
class members. Use this to specify which one to use.

Pair::Pair(int x, int y) {

this->x = x;

this->y = y;

}

this
You can also use this even if the names are different,
although it is not necessary.

Pair::Pair(int a, int b) {

this->x = a;

this->y = b;

}

Constructors and Destructors
When an object is created, the constructor is called. This
will initialize the object.

When the scope of an object is exited, the destructor is
automatically called on the object. This will perform any
needed cleanup.

Constructors and Destructors
class foo {

int * _a;

public:

foo(); // empty constructor

foo(int *a); // another constructor

~foo(); // destructor

};

Constructors and Destructors
You can initialize members of the class such as below

foo::foo() : _a(NULL) {}

foo::foo(int * a) : _a(a) {}

foo::~foo() { if (_a) delete _a; }

Operator Overloading
Suppose we have a class vec3 that represents a
mathematical 3D vector.

It makes sense for us to add two vec3 objects, but to C++,
it doesn’t directly understand how to add two arbitrary
object types.

Operator overloading lets us define a series of operations
on objects.

Operator Overloading
vec3 operator+(const vec3& v);

vec3 vec3::operator+(const vec3& v) {

 return vec3(_x+v.x, _y+v.y, _z + v.z);

}

Addition is just one of the several operators you can
overload.

Templates
In C, void * is used to handle arbitrary types.

In C++, we can define a template type to take the place of
any type.

Templates
This is how a template function is declared:

template <typename T>

void swap(T& a, T& b) {

 T c = a;

a = b;

b = c;

}

Templates
This is how templates are used in code:

int a = 2, b = 3;

char c = ‘c’, d = ‘d’;

swap<int>(a, b);

swap<char>(c, d);

Templates
Since a template can be used for any arbitrary type, C++
compiles a separate object file for each type used.

Template classes should reside only in .h files, not split into
.h and .cc files.

